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NONSINGULAR SMOOTHING REPRESENTATIONS FOR DIFFERENTIAL
FLOWS ON MANIFOLDS

For general noncompact manifold and essentially nonlinear diffusion we derive the nonsingular raise of
smoothness representations for semigroup derivatives which generalize results of [3]

1. Introduction.

Let us consider the parabolic Cauchy problem in IR?:

{ %u(t: ;1:) = Hu(t, T) (1)
u(0,z) = f(z) € B

with operator
H=-A+ < F(z),V: >

where function F € C*(IR?) is monotone and grow at infinity with all its derivatives F()
like:
3 Viz1 ||[FO(2) - F@| < Gillz ~ gl + llall + llyl)® (2)

By standard theory (see, for example, [11]), the semigroup P; = e *# with generator H

is associated with problem (1) and gives its solution u(z,t) = P,f(x). It is well-known that,
if H is m - dissipative, densely defined operator in some Banach space B (say Cf*(IR%)), then
semigroup P, is strongly continuous in time and this space B is preserved under the action of
semigroup, i.e. for initial function f € B the solution of (1) u(t,-) € B, for t € [0,T]. But due
to condition (2) the coefficients of operator H rapidly grow at infinity, thus the semigroup
P, is not strongly continuous in the space of bounded continuous functions Cj'(M). In this
case analytical techniques do not give a grounds to conclude about the preservance of this
space, and similar about the raise of smoothness in this scale: P, : C*(IR?) — C™"'(IR%).

In this paper we consider the problem (1), in the not strongly continuous case, when
operator
1
H=g D (< Aa,V )2+ < 4y, V > (3)

[

is considered on the non compact Riemannian manifold and has unbounded growing coeffi-
cients, generated by smooth vector fields {A,}¢_,, 49 on M, dimM = d.

Using the connection of semigroup theory with stochastic differential equations (SDE),
given by formula

(Pf)(x) = Ef (&)
with & to be the solution to special SDE on manifold M, we construct the representation
for covariant derivatives of semigroup V§ ...V} P, f(z) in terms of pure (without derivatives)
function f, of the type:
Vi, Vi, Pf(z) = Ef (&) Vs, .k, (4)

with some kernels Wy, ;. . Good estimates on these kernels will imply the raise of smoothness
property for semigroup P;.
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Similar representation for the first order derivative of P, was obtained in |7, 9] in the
case of compact Riemannian manifold.

2. SDE on manifolds: notations, assumptions and auxiliary results.

Let M be smooth connected d-dimensional Riemannian manifold with metric tensor g;;.
Using that operator H is second order differential operator semigroup P; can be reconstructed
by the the solution of stochastic differential equation on M:

08 = Ao(&7)dr + 3° Aq(§7)0W2 B
. _ E (5)
=z M
by formula
(Pf)(z) =E f(&). (6)

Here E denotes mathematical expectation with respect to the canonically realized Wiener
measure W on the probability space Q = Cy(IR,, IR?), W?, a = 1, ...,d denote d independent
IR'-valued Wiener processes, W, is Stratonovich differential.

Correct definition of equation (6) on the manifold is an important question, which
was widely discussed in the literature. There are several approaches to the solution of this
problem (see, for example, [4, 8, 10, 12]). In this paper under the solution of equation (5)
we understand the adapted process &, such that for any infinitely differentiable function f
the following stochastic differential equation is true in R':

] b e [%f dT+Z/ Aaf)(E)SW 2

Choosing f(x) = z* we obtain the equation in local comdmateq z¥ in some vicinity U,.

Let us impose on the coefficients of operator H and geometry of manifold the followi ing
conditions.
A1) Dissipativity. For some fixed point 0 € M and any constant C € IR' there exists
such constant K¢ € R that Vo € M

d
< Zol2), V2P (2,0) > +C Y [4a(@)I < Kol + (2, 0))

a=1

Here

— 1
Ay=Ao+y ; Va, Aq

where V,  denotes covariant derivative in direction of vector field 4,, V* means that
covariant derivative V acts on function p?(z,0) on the first variable z, p is a metric on
manifold M. Further the norms of vector field and pairing < -, - > are taken in corresponding
tangent spaces.

A2) Coercitivity: for any constants C, C' € IR' there exists such constant Ko € R,
that for any z,y € M and h:

d d
< VAglhl,h > +C Y IVAG[RI? +C" D" < R(Aa, h)Aa, h >< Kcl||h]?

=1 a=1
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Here expression

< R(Aa, h)Ag, b >= g R, APH™ AL R

is defined in terms of (1, 3) curvature tensor Rp'”}q and metric tensor gm,.
A3) Nonlinear growth of coefficients. For all 7. € IN there exists constants &, ., ®x
such that '

IV5Ao(@)] < (1+ p(x,0))=
IVyAa(@)l < (1 + plz, 0))
IVyR(z)|| < (1+ p(z, 0))%"
where Vo= Voo, Vo= {5n, 0.k
A4) Non degenerate diffusion coefficient. There exists constant &, > 0 such that

[ 4a(a)
T+ Ao =7

For further use we need some notations and concepts from the Malliavin calculus.
Let J denote the set of all adapted continuous integrable IR%-valued processes u;(w)

mf

T
such that E [ |u|Pdt < oc for all T, p > 0. Recall that random function F(w), defined on the
0
Wiener space w € Q = Cy(IRy, R?Y), is stochastically differentiable in the direction v € J if

on the set of full measure there exists derivative in space 0 L (O, W;
2

t

F(lwr(®) +¢ [ utds)imp® U

0

d

e=0

It is well-known (see [5, 15, 16, 17, 19]), that stochastic derivative D, possesses the
properties, similar to usual derivatives:

d
1°. Dyuf(€,..,8") = X2 Gif (€., §") Duf’

i i

2. Def fodr=.J Dsf-dr (8)
2 d 0__ 3 tovd o t d

3% Dy f 2 9\ T)0Wz, = [ 2 Dugo(T)OWY + [ 2, U7 9s(T)dr
0 o= 0 o=1 0 o=

Moreover, it is true the following integration-by-parts formula [17, 20|, which means
that stochastic derivative is adjoint operation to the integration with respect to the Wiener
measure:

ED,F = IEF/Zu"dW" (9)

g o=t

which implies, in particular, that

oo d
E(D,F)G = —IEFDHG+IE1FGf > uldwy (10)
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To see the structure of equation on the covariant derivative we write
8 m 844171 6_,_11m
O _DA(E) | 947(E)

oxk ozk 7

Adding and subtracting terms with connection we collect the covariant derivatives of vector
fields A,(&F), Ao(&F) and apply the symmetry of connection on lower indexes.

sWe

(o) = (ViAT O 5 ~ IO 2 a8t + (VAT O % —1,m(6) X 4z ) o

Collecting the differential 0 = Ay (E)dﬁ + .40(5)()”"0 we obtain equation on ordinary deriva-
tive of process £ with respect to the initial data

t t
%%1 = —fl" HE )a k(}f‘? / V;AG(€) —~—d5 +/Vj.4";(§) giom # (11)
0
Using the properties of stochastic derivatives (8), in partiocular that
DA™ (&) = 0;A™ (&) Dug] (12)
we write
3(DuE™) = (04T () Dutl + AT (€)u” ) dt + 0, AT(E) DuloW (13)

Adding and subtracting terms with connection we form the covariant derivatives:
S(Du") = (ViAT (€)Duf? — T,5(E) DutPAY(E) + AT(E) u ) dit+
 +(VAREODE ~ T, DAL () ) SWO

Finally, separating the differential 6¢ we achieve the equation on stochastic derivative of
process &

t t
D, g :f44?(§)u”d3—/ LD ET0E 4 fV AME)DyElds + /V A™(€) D EIdW°
0 0

(14)
3. Invariant representation for semigroup derivatives.

This section we would like to begin with some foregoing discussions. Let us apply the
integration by parts formula (9) to functional F' = f(£)¥, then we have

bia
D[ f6)v] =Ef€)¥ [ Y uzaws

0 =1

Properties of stochastic derivative D, (8) imply:
i

E f'(&)Du&: ¥ = E £(&) {‘I’/Zufdwg Du‘lf}

0(}'-...
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or, redenoting D, & ¥ by @, we have

-
=

P
1)@ =Ef(& 7aw?
E f'(§)® = Ef(&){ s Du(pz)}
Using th 7 F, E 0, { lud
sing that Bk flz) = f( )— we conclude
T
0 ak& W Ok
5Pl @) =Efe){ 5t [;u,dw - Du( gy} (15)

0
Actually, formula (15) shows that to obtain the nonsingular representation of semigroup

derivative a—P;f(st:) it is necessary to guarantee, that expression in brackets {...} is not
T

singular. The simplest way to do this is to express D,& as a function of 9,£. This idea lies

in the grounds of our investigation.

THEOREM 1. Let conditions Al) — A4) be fulfilled. Then there exists stochastic direction
zr € J such that

D& =t5E (16)
and the following estimate is true:
E ( fo t zgdlfi-"")zq < K t9eM(1 + p*(x, 0))20 (17)
Proof. 1. Let us take direction u = z; chosen so that
N = (18)
Substituting in (14) instead of D,¢& its value in the direction u = z: D, & = t-éy—n— using

the equation (11), and relation (12), it is not difficult to check that equation (141): is valid
identically. In [2] it was proved the solvability and moment estimates on the solutions of
coercitive equations (11) and (14). From the uniqueness of solutions of these equations it
follows result (16).

2. The Doob inequality [6] gives:

t of
E( f 27 AWO)M < K, 17 E / 2l ds
0 0
In [1] it was proved the following nonlinear quasi-contractive estimate

ra(€%,t) < ¥'ry(z,0) (19)

for nonlinear expression

(€, ) ZEpJ (&, 0)I(weyeg|| e
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where

J
I(VIEN? = gun(€) [] 9 @) V5,1, €™V, 1 €

=1

in term of some generalization of covariant Riemannian derivative
a m
Wittt =Npt% = af,‘
£
Vi(V,€™) = Vi(VW,€™) + T4 (§) W, PV €7
In particular, nonlinear estimate (19) implies:

E(1 + p*(&,0)*™ (| V& < M (1 + p*(z,0))**

Therefore
t t
E(f 22dW?) < K, tq"lEf (1+ p%(&,0))2™!||VE,||*%ds < K %€V (1 + p*(z, 0))%7™
0 0

which implies the statement. [J
Let us introduce the following notation:

B =t —D % fz 22dW? (20)

o=1

where z; is a specially chosen direction (18).

THEOREM 2. High order covariant derivative of semigroup P, permits representation:

VEPS(2) = B (E)Y, (21)

Above Y, =Y, .Y, foraset v = {ky ...k}

Proof. 1. Base of induction follows from the Kolmogorov representation for semigroup
for j = 0.

2. Inductive step. Let (21) hold for some v, v = {ki, ..., ko }. We write its next |y|+ 1 -
derivative, using the representation for derivative of order |yl:

ViViPef(z) = EV,Pif(z) - ) T/%(2) Yy, Puf(z) =
J€Y
= a’f(fnl i hzrkj JEf(§ 'vi, o
Jey
tm (oY, 1—;“ Yy, 1} + tt,,lrﬁ:akf(f) 1 (22)
=g

Theorem limplies:

ael

=0 = 18D = 1D, 1(€) (23)

Kf(&") = B€7 Oak
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Therefore

1 " ' o
ViV B f(z) = WEf(ff){th —BgF [; Z ZdWI Y, 1
o=1

4. Concluding remarks on orthoframe approach.

Let us remind that the representation (21) is obtained in the case, when the stochastic
differential equation has the form (5), and therefore, generator is given by (3). It is well-
known, that in the case of non zero Euler number, the manifold do not permit the existence of
globally defined smooth unit vector fields. Therefore, it is impossible to find globally defined
fields A,, Ay such that operator H becomes Laplacian.

For this purpose we may consider the system, written in local coordinates:

)l nb £y
&) =2* + [ Bi(§)ea(t)dWe + [ AT ()dt
0 ; 0 (24)
es(t) = €5(0) = [ Ty 1 (E)ef(t)oE™
0
where W¢, a = 1,...,d denote d IR'-valued independent Wiener processes, B € T}'(M) and
A should be specified further to obey the Ito transformation law.
Remark that in system (24) the equation on & on base space is related with the evolution
of orthoframe field €, = (e!,)L,, a = 1,...,d, that form a basis in T, M. Thus gijenes = 0ap
or in matrix notations

E*GE = Id (25)

which, in particular, implies
d
APy
g €6 =i
a=1

where " are elements of inverse metric tensor G~! = (gV).
Therefore, the application of Ito formula leads to the generator of process & (24)

B %TT(BS(BS)*()‘?) + A0 = %TT(BG*B*@?) + A0

that does not depend on the choice of particular orthoframe field €,.
In particular, for B = Id one gets the Laplace - Beltrami operator

e % 1 d (gq‘jmi) L5

VdetG 0 Oz
« EPIRE ;A ] (- 0
=g 2 % 4 g0 2 (In(detq))-Z
2g ozt Oxd 1 29 ozt ( n(detG]) oxzJ
1. @ 0
TR o0 s i & . : 2
if A 29 e (ln(detG)) pyrt In this case process (&, €,(t)) is known as Ito development

and has important applications to the analysis on Wiener space [5, 14]. We also remark that
the general construction of general diffusions on manifold, without introduction of orthofield
¢ were developed by different authors, see [4, 7, 13, 18] and references therein.
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By the scheme of previous section, it is clear that the main point in the seeking of
nonsingular semigroup representations is to find such direction v € J that

D-u{v)gt = tav ‘ft

for some smooth vector field v € TM.
To proceed further we need the generalization of stochastic derivative, introduced in
previous section, which is known as Bismut derivative D, ) for so(d) x IR? -valued process

(g, h):
d

DpyF(w) = —

14
= F(/ﬂ exp(eqs)dWs + ehy)

e=0
Derivative D,y is well defined on cylindric functions and by standard procedure permit

the continuation on the functionals on Wiener space [5, 19]. As a consequence of Girsanov

theorem the following integration by parts formula can be proved (see, for example [20]):

g4

ED( 1 F = EF / h(w, t)dW, (26)
0

For Bismut derivative D, it is not difficult to prove that for processes X, Y with differentials
dX = X'dW + X%t dY =YdW +Y?%dt

and u = (g, h) with skew-symmetric g € so(d)

D, [ Xi0Y; = f (DuX1)dY; + f Xi6(DuY?) (27)

THEOREM 3. Let process (£,e) be governed by equation (24). Then for process u(v) =
(q(v), h(v)) given by

L(t) = [ 106, +T,0 ek (8,™)ds
0 (28)
e = eR-L ()0,

relation holds
Du{v}gf = tav&?

Proof. Let us write for process & given by (24) the equation on stochastic derivative
D.&f and t0,&f, where 0,& be ordinary derivative of process & with respect to the initial
data x in the direction of vector field v € TM:

t t t i
10,6} = f D, Erds+ f (0, B )(0,€M)emdW 2+ f sBk 9,emdW*+ f $(0,A¥)0,£7ds (29)
0 0 0 0

Duw& = [;(0nBE)(Duw)Etem(s)dWe + | BE, (Du(z:)t'fﬂ'fglr"(3))5’“”"?“1r
(30)
+ [y (0 A)(Duy€2)ds + [y Blem (1 (v)ds + g (v)aw?)
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Imposing condition Dy,)&f = t0,&F we have that integrals with d,B% and 0,A* disappear.
Making two differentials equal we have

at dW  Dyue™ + emg)(v) = t8%em
at dt  Oy¢f = Bl (§)enh?

For process ej(t) governed by (24) we have:

10, = [y (Duel)ds — [y 50, (L0 ek )0E™)s — [ sT,1 eko (@)

;5 i -
'u{”)f = fo U(‘b]‘( m }Le )()65 fo rm k(’.gﬂ (D?f-(if}ggn)

Using that Dyw)&f = t0,£F implies 9, f(§) = D, f(£), in particular for f(£) = %, (
and properties of Stratonovich integral, we have

t t
e,qa = tdye, — Dywme, = f (0ye,)ds — / iy (Sﬁveg‘; Dhgoyes )c}f’”
0 0

t
'/ Srm k€a O(abg;n) +/ 1 ke 0(58 gm =
0

i i i
" / (B Ml / L ek (B,6m)ds — f i lebqzoem
0 0 0

Let us denote by ¢ the elements of matrix € inverse to £, then g = éf(ef},qg)‘ Accounting
that ¢(0) = 0 we have

t
s Jo"e Qi & Jt)&m+f¢-? (8@634—1—‘ Lokl fm))da - fedl" . wefqroem

Therefore

¢(t) = f e (Bueh + Tk ek(DuE™ )ds (31)
0
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